		Mark	Comment	Sub
1(i)	$6 \mathrm{~m} \mathrm{~s}^{-1}$ $4 \mathrm{~m} \mathrm{~s}^{-2}$	B1 B1	Neglect units. Neglect units.	B1
(ii)	$v(5)=6+4 \times 5=26$ $s(5)=6 \times 5+0.5 \times 4 \times 25=80$ so 80 m	M1 A1	Or equiv. FT (i) and their $v(5)$ where necessary. cao	
(iii)	distance is $80+$ $26 \times(15-5)+0.5 \times 3 \times(15-5)^{2}$ $=490 \mathrm{~m}$	M1 M1 A1	Their $80+$ attempt at distance with $a=3$ Appropriat uvast. Allow $t=15 . ~ F T ~ t h e i r ~$ cao	

		Mark	Comment	
2	$\begin{aligned} & a=12-6 t \\ & a=0 \text { gives } t=2 \\ & x=\int\left(2+12 t-3 t^{2}\right) \mathrm{d} x \\ & 2 t+6 t^{2}-t^{3}+C \\ & x=3 \text { when } t=0 \\ & \text { so } 3=C \text { and } \\ & x=2 t+6 t^{2}-t^{3}+3 \\ & x(2)=4+24-8+3=23 \mathrm{~m} \end{aligned}$	M1 A1 F1 M1 A1 M1 A1 B1	Differentiation, at least one term correct. Follow their a Integration indefinite or definite, at least one term correct. Correct. Need not be simplified. Allow as definite integral. Ignore C or limits Allow $x= \pm 3$ or argue it is \int_{0}^{2} from A then ± 3 Award if seen WWW or $x=2 t+6 t^{2}-t^{3}$ seen with +3 added later. FT their t and their x if obtained by integration but not if -3 obtained instead of +3 . [If 20 m seen WWW for displacement award SC6] [Award SC1 for position if constant acceleration used for displacement and then +3 applied]	8
		8		

		mark		sub
3	$(v=) 12-3 t^{2}$	M1	Differentiating	
	$v=0 \Rightarrow 12-3 t^{2}=0$	A1		
Allow confusion of notation, including $x=$				
so $t^{2}=4$ and $t= \pm 2$	A1	Dep on 1 Accept M1. Equating to zero. only if quadratic or higher degree. cao. Must have both and no extra answers.		
	$x= \pm 16$	A1		
			5	

4		mark	notes
(i) (A) (B) (C) (D)	$\begin{aligned} & 4 \mathrm{~m} \\ & 12-(-4)=16 \mathrm{~m} \\ & 1<t<3.5 \\ & t=1, t=3.5 \end{aligned}$	B1 M1 A1 B1 B1 B1 6	Looking for distance. Need evidence of taking account of +ve and -ve displacements. The values 1 and 3.5 Strict inequality Do not award if extra values given.
(ii)	$\begin{aligned} & v=-8 t+8 \\ & a=-8 \end{aligned}$	M1 A1 F1 3	Differentiating
(iii)	$\begin{gathered} 8 t+8=4 \text { so } t=0.5 \text { so } 0.5 \mathrm{~s} \\ -8 t+8=-4 \text { so } t=1.5 \text { so } 1.5 \mathrm{~s} \end{gathered}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \hline \end{aligned}$	FT their v. FT their v.
(iv)	method 1 Need velocity at $t=3$ $v(3)=-8 \times 3+8=-16$ either $v=\int 32 \mathrm{~d} t=32 t+C$ $v=-16$ when $t=3$ gives $v=32 t-112$ $y=\int(32 t-112) \mathrm{d} t=16 t^{2}-112 t+D$ $y=0$ when $t=3$ gives $y=16 t^{2}-112 t+192$ or $y=-16 \times(t-3)+\frac{1}{2} \times 32 \times(t-3)^{2}$ (so $y=16 t^{2}-112 t+192$) method 2 Since accn is constant, the displacement y is a quadratic function. Since we have $y=0$ at $t=3$ and $t=4$ $y=k(t-3)(t-4)$ When $t=3.5, y=-4$ so $-4=k \times \frac{1}{2} \times-\frac{1}{2}$ so $k=16\left(\right.$ and $\left.y=16 t^{2}-112 t+192\right)$	B1 M1 A1 B1 M1 A1 5	FT their v from (ii) Accept $32 t+C$ or $32 t$. SC1 if $\int_{3}^{4} 32 \mathrm{~d} t$ attempted. Use of their -16 from an attempt at v when $t=3$ FT their v of the form $p t+q$ with $p \neq 0$ and $q \neq 0$. Accept if at least 1 term correct. Accept no D. cao Use of $s=u t+\frac{1}{2} a t^{2}$ Use of their -16 (not 0) from an attempt at v when $t=3$ and 32. Condone use of just t Use of $t \pm 3$ cao Use of a quadratic function (condone no k) Correct use of roots k present Or consider velocity at $t=3$ cao Accept k without y simplified.
	sicsAndMathsTutor.com	16	

		mark	comment	sub
5(i)	The line is not straight	B1	Any valid comment	
(ii)	M1	Attempt to differentiate. Accept 1 term correct but not $3-\frac{3 t}{8}$.		
	$a(4)=0$ The sprinter has reached a steady speed	F1	Accept ‘stopped accelerating' but not just $a=0$. Do not FT $a(4) \neq 0$.	

(iii)

We require $\int_{1}^{4}\left(3 t-\frac{3 t^{2}}{8}\right) \mathrm{d} t$	M1	Integrating. Neglect limits.
$=\left[\frac{3 t^{2}}{2}-\frac{t^{3}}{8}\right]_{1}^{4}$	A1	One term correct. Neglect limits.
$=(24-8)-\left(\frac{3}{2}-\frac{1}{8}\right)$	M1	Correct limits subst in integral. Subtraction seen. If arb constant used, evaluated to give $s=0$ when $t=1$ and then $\operatorname{sub} t=4$.
$=14 \frac{5}{8} \mathrm{~m}(14.625 \mathrm{~m})$	A1	cao. Any form. [If trapezium rule used M1 use of rule (must be clear method and at least two regions) A1 correctly applied M1 At least 6 regions used A1 Answer correct to at least 2 s.f.

6				
(i)	$8 \mathrm{~m} \mathrm{~s}^{-1}$ (in the negative direction)	B1	Allow \pm and no direction indicated	1
(ii)	$\begin{aligned} & (t+2)(t-4)=0 \\ & \text { so } t=-2 \text { or } 4 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Equating v to zero and solving or subst If subst used then both must be clearly shown	2
(iii)	$\begin{aligned} & a=2 t-2 \\ & a=0 \text { when } t=1 \\ & v(1)=1-2-8=-9 \end{aligned}$ so $9 \mathrm{~m} \mathrm{~s}^{-1}$ in the negative direction $(1,-9)$	M1 A1 F1 A1 B1	Differentiating Correct Accept -9 but not 9 without comment FT	5
(iv)	$\begin{aligned} & \hline \int_{1}^{4}\left(t^{2}-2 t-8\right) \mathrm{d} x \\ & =\left[\frac{t^{3}}{3}-t^{2}-8 t\right]_{1}^{4} \\ & =\left(\frac{64}{3}-16-32\right)-\left(\frac{1}{3}-1-8\right) \\ & =-18 \end{aligned}$ distance is 18 m	M1 A1 M1 A1 A1	Attempt at integration. Ignore limits. Correct integration. Ignore limits. Attempt to sub correct limits and subtract Limits correctly evaluated. Award if -18 seen but no need to evaluate Award even if -18 not seen. Do not award for -18. cao	5
(v)	$2 \times 18=36 \mathrm{~m}$	F1	Award for $2 \times$ their (iv).	1
(vi)	$\begin{aligned} & \int_{4}^{5}\left(t^{2}-2 t-8\right) \mathrm{d} x=\left[\frac{t^{3}}{3}-t^{2}-8 t\right]_{4}^{5} \\ & =\left(\frac{125}{3}-25-40\right)-\left(-\frac{80}{3}\right)=3 \frac{1}{3} \\ & \text { so } 3 \frac{1}{3}+18=21 \frac{1}{3} \mathrm{~m} \end{aligned}$	M1 A1 A1	\int_{4}^{5} attempted or, otherwise, complete method seen. Correct substitution Award for $3 \frac{1}{3}+$ their (positive) (iv)	3
				17

